
Stephen Checkoway

Programming Abstractions
Lecture 7: Map and Apply

Motivation

You have a list of data lst and you have a procedure f and you want to apply f

to every element of lst, getting a new list back

‣ E.g., you have '(1 2 3) and you want (list (f 1) (f 2) (f 3))

Example: Adding a base to a list of offsets

Imagine we have some base value and a list of offsets and we want the result of

adding the BASE to each of the offsets

(define BASE 100)

(define OFFSETS '(1 3 5 6 8 52))

we can write a procedure to take a list of offsets and produce a list of final

values of BASE + offset: '(101 103 105 106 108 152)

Example: Adding a base to a list of offsets

(define (final-values lst)

 (cond [(empty? lst) empty]

 [else

 (let ([val (+ BASE (first lst))]

 [remainder (final-values (rest lst))])

 (cons val remainder))]))

Example: Getting domains from a URL

Imagine we had a list of URLs like 

(define urls

 '("https://www.cs.oberlin.edu/classes/major-in-cs/"

 "https://checkoway.net/teaching/cs275/2021-fall/"

 "https://duckduckgo.com"))

and we wanted a list of domains that corresponded to those URLs  

'("www.cs.oberlin.edu" "checkoway.net" "duckduckgo.com")

we could write a procedure turn a list of URLs into a list of domains

Example: Getting domains from a URL

(require net/url) ; defines string->url and url-host

(define (domains lst)

 (cond [(empty? lst) lst]

 [else

 (let* ([url (string->url (first lst))]

 [domain (url-host url)]

 [other-domains (domains (rest lst))])

 (cons domain other-domains))]))

Example: List of courses

We have a list of courses (represented as a list) like

(define COURSES

 '((CSCI 150 "Professor Feldman")

 (CSCI 151 "Professor Geitz")

 (CSCI 241 "Professor Hoyle")

 (MATH 220 "Professor Calcut")))

and we want just a list of course numbers '(150 151 241 220)

We can write a procedure to turn a list of courses into a list of numbers

Example: List of courses

(define (course-numbers lst)

 (cond [(empty? lst) empty]

 [else (let* ([course (first lst)]

 [num (second course)]

 [others (course-numbers (rest lst))])

 (cons num others))]))

Similarities

In each case, we have a list of elements of type !

We have an operation we want to apply that takes a value of type ! and returns

a value of type "

We want to apply that operation to each element of our list to get a list of

elements of type "

Examples:

‣ Base + offset: ! = " = number

‣ Domains: ! = URL, " = domain (both were strings here)

‣ Courses: ! = course (as a list), " = number

Similarities

In each case, we have

‣ list of !

‣ An operation ! → "

And our output is a list of "

Map: the simple case
(map proc lst)

map applies the procedure proc to every element in list lst

(map f '(1 2 3 4)) => (list (f 1) (f 2) (f 3) (f 4))

(map sub1 '(10 15 20)) => '(9 14 19)

(map (λ (x) (list x x)) '(a b c)) => '((a a) (b b) (c c))

(map first '((a 5) (b 6) (c 7))) => '(a b c)

In each case

‣ proc is a function ! → "

‣ lst is a list of !

‣ the result is a list of type "

Rewriting our examples with map

(define (final-values lst)

 (map (λ (offset) (+ BASE offset)) lst))

(define (domains lst)

 (map (λ (url)

 (url-host (string->url url)))

 lst))

(define (course-numbers lst)

 (map second lst))

What is the result of this?

(map rest '((a 5) (b 6) (c 7)))

A. '((5) (6) (7))

B. '(5 6 7)

C. '((b 6) (c 7))

D. '(5) '(6) '(7)

E. '(b c)

13

What is the result of this?

(map (λ (lst) (cons (first lst) lst))  
 '((1 2) (3 4)))

A. '(1 3)

B. '((1 1 2) (3 3 4))

C. '((1 (1 2)) (3 (3 4)))

D. '((1 4) (2 3))

E. '((1 3) (2 4))

14

There's a standard library procedure (round x) that takes a number as

input and rounds it to the nearest integer

If we have a list of numbers '(1.1 2.9 3.5 4.0) and we want a list of

rounded numbers '(1.0 3.0 4.0 4.0), how can we get that?

A. (map (round x) '(1.1 2.9 3.5 4.0))

B. (map (λ (x) (round x)) '(1.1 2.9 3.5 4.0))

C. (map round '(1.1 2.9 3.5 4.0))

D. (round '(1.1 2.9 3.5 4.0))

E. More than one of the above

15

Using map to extract structured information

Imagine you had some data for penguins structured as a list of records and

each record is a list:  

(species island mass sex year)

E.g., 

(define penguins  

 '((Adelie Torgersen 2750 male 2007)  
 (Gentoo Biscoe 4400 female 2008)  
 …))

We can get a list of masses of the penguins via map  

(map third penguins) => '(2750 4400 …)

Get the average mass of Gentoo penguins
(species island mass sex year)

We can get a list of Gentoo penguins via filter

We can get the masses via map

(define average-gentoo-mass

 (let* ([gentoos

 (filter (λ (p) (eq? (first p) 'Gentoo)) penguins)]

 [masses (map third gentoos)])

 (/ (sum masses) (length gentoos))))

Do we have to write sum again?

We know that + takes any number of arguments, e.g., (+ 1 5 3 -8 20)

We have a list of masses

It'd be nice to tell Racket, "use this list as the arguments to +"

Applying a procedure to a list of arguments
(apply proc lst)

Applies proc to the arguments in lst and returns a single value

(define (maximum lst)  
 (apply max lst))  

(maximum '(1 3 4 2)) => (apply max '(1 3 4 2))  
 => (max 1 3 4 2)  
 => 4

(define (sum lst)  
 (apply + lst))  
(sum '(1 2 3)) => (apply + '(1 2 3)) => (+ 1 2 3) => 6

Returning to our penguins

(define average-gentoo-mass

 (let* ([gentoos

 (filter (λ (p) (eq? (first p) 'Gentoo)) penguins)]

 [masses (map third gentoos)]

 [total-mass (apply + masses)]

 [num-gentoos (length gentoos)])

 (/ total-mass num-gentoos)))

Applying with some fixed arguments
(apply proc v… lst)

apply takes a variable number of arguments where the final one is a list and

applies proc to all of those arguments

(apply proc 1 2 3 '(4 5 6)) => (proc 1 2 3 4 5 6)

Recap

If you have a list of data and you want to apply a procedure to each element of

the list, use map

(map f '(1 2 3)) => (list (f 1) (f 2) (f 3))

If you have a procedure and a list of data and you want to call the procedure

with the data in the list as the arguments, use apply

(apply f '(1 2 3)) => (f 1 2 3)

